
Optimizing the Developer and User Experiences

for Cross-Platform Applications

IT@Intel White Paper
Intel IT
Mobile App Development
March 2014

Our proof of concept confirmed
that our architecture did

support our goals for optimizing
cross-platform applications

using a single code base.

Samion Kuptiev

Lead Developer, Intel IT

Mark Reidman

Software Developer, Intel IT

Executive Overview

Intel IT implemented a new type of software architecture that enables us to

develop large-scale, UI-optimized, cross-platform applications using a single code

base with maximum code reuse between supported platforms.

With the consumerization of IT and growth of
personally owned devices, we must develop
enterprise applications that run on multiple
devices and platforms (operating systems
and browsers). For many use cases, the
responsive web design approach is sufficient,
where we develop applications using a
single code base and render the UI based on
screen size. However, some use cases require
applications to take advantage of platform-
specific features, such as touch, gesture, and
native look and feel.

For those use cases, we recognized that we
needed to implement a new type of software
architecture. Our new architecture has several
components:

• Open source libraries. Libraries provide
features that we can integrate into
an application stack. They also provide
functionality specific to a device or platform.

• Model View ViewModel (MVVM). The
MVVM design pattern enables us to break
an application into layers, separating the
business logic from the UI. This enables

us to share logic and data layers while
rendering views and interaction types
based on platform. This modular approach
also helps developers to work more
efficiently on smaller pieces of code and
more effectively on project teams.

• Object-oriented programming (OOP)

techniques. OOP techniques provide
the JavaScript* objects, inheritance, and
encapsulation concepts for our architecture.

• A 70/30 reuse model. This model
enables us to reuse 70 percent of the code
common to all views while the remaining
30 percent is platform-specific code.

Our proof of concept confirmed that our
architecture did support our goals for
optimizing cross-platform applications
using a single code base. Employing best-
known methods, we are implementing our
architecture for applications that are complex,
interactive, and targeted for multiple platforms.
This approach leads to improved developer
and user experiences and is well situated to
accommodate the devices of the future.

2 www.intel.com/IT

IT@Intel White Paper Optimizing the Developer and User Experiences for Cross-Platform Applications

Contents

Executive Overview ... 1

Background ... 2

Solution ... 2

Open Source Libraries .. 3

Model View ViewModel 3

Object-Oriented
Programming Principles 4

70/30 Reuse Model .. 5

Best-Known Methods ... 6

Conclusion ... 7

Related Information ... 7

Acronyms ... 7

IT@INTEL
The IT@Intel program connects IT
professionals around the world with their
peers inside our organization—sharing
lessons learned, methods, and strategies.
Our goal is simple: share Intel IT best
practices that create business value and
make IT a competitive advantage. Visit
us today at www.intel.com/IT or contact
your local Intel representative if you’d
like to learn more.

BACKGROUND
In the past, Intel IT’s development
efforts relied on a single set of
products and technologies to create
web applications for a single browser.
This approach often led to redundant
development efforts when new
platforms needed to be supported; we
had to develop the same application
again for each platform. Now, with
the introduction of numerous devices
and platforms in the enterprise, it has
become critical that we develop cross-
platform applications only once and
then deploy them on many platforms.

To support cross-platform application
development, we primarily use responsive
web design (RWD). The RWD approach is
aimed at developing applications that optimize
the user’s viewing experience, whether on a
smartphone or desktop monitor. Using RWD,
we develop a cross-platform application using
the same code base, including all the logic for
the various screen sizes in the same project.
The application’s UI is then rendered based
on screen size. This approach enables us to
write a program once while providing a “good
enough” user experience—one that minimizes
resizing and scrolling. However, RWD does
not take advantage of the native features or
capabilities of a device.

RWD is appropriate for 80–90 percent of use
cases: small applications that are meant to be
informative, not interactive. Typically, these
applications are also targeted for one main
platform. If there is more than one platform,
all the form factors must be identified at the
start of a project, as RWD requires.

The remaining use cases concern applications
that are more complex and interactive. These
applications are targeted for multiple devices
and platforms, some of which may not be
known at the start of the project. For those
use cases, we also wanted to provide an
excellent user experience, one that could
take advantage of the device’s or platform’s

capabilities and interaction types, such as
a menu that appears in a certain place or a
touch-enabling action on a smartphone or
tablet. Users expect enterprise applications
to provide the same level of experience that
they get with consumer applications. With
those objectives in mind, we knew that we
needed to optimize the UI for the platform
we were developing the application for.

Our goal was to build a cross-platform
architecture that could effectively address
the following:

• Create a UI that is optimized for the
interaction type of each platform

• Take advantage of each platform’s
capabilities

• Maximize code reuse, particularly when
combined with the challenge of developing
UIs that are optimized for different platforms

We envisioned that implementing such an
architecture would lead to excellent developer
and user experiences. This architecture
would also position us for supporting the
applications and devices of the future (see
the “Transforming the IT Ecosystem” sidebar).

SOLUTION
As we began to build our software
architecture, we started with the well-
established approach of decoupling
the user interface implementation
from the business logic and its
underlying data sources. In addition,
we extended the business logic layer
so it would better support different
platforms. This approach would enable
us to switch between different UI
views, libraries, and data sources to
maximize platform capabilities while
keeping the same code base.

We chose to break applications into well-
structured, component-based layers. Breaking
applications down this way separated the

http://www.intel.com/IT
http://www.intel.com/IT

www.intel.com/IT 3

 Optimizing the Developer and User Experiences for Cross-Platform Applications IT@Intel White Paper

application logic from the view, enabling us
to focus on developing a reusable code base
and implementing a method for changing the
UI views depending on the platform.

Our platform-optimized architecture includes
several components:

• Open source libraries that serve different
purposes, such as navigation and storage

• Model View ViewModel (MVVM) as a
design pattern or foundation

• Object-oriented programming (OOP)
principles in JavaScript*

• A 70/30 reuse model

The following sections describe our decision
making process for including each of these
components in our architecture.

Open Source Libraries
To build our architecture, we evaluated both
open source frameworks and libraries as
candidates for supplying the application
building blocks.

We discovered a number of disadvantages with
the leading frameworks. The main disadvantage
was that we could not reuse UI components
for different views, which meant that those
frameworks would not support cross-platform
optimization. In addition, the leading frameworks
were not comprehensive enough to address
all the requirements of an application. These
frameworks restricted developers to their own
implementation and architecture, forcing a
rewrite of the applications whenever a new
framework was introduced.

Next we evaluated libraries and found
that they would support cross-platform
optimization. We could use different
libraries for building the UI layer on different
platforms. To address an application’s
requirements, libraries could be added into
an existing architecture without restricting
developers to a particular implementation.
To maintain applications, developers could
replace libraries with newer versions without
needing to rewrite entire applications.

Therefore libraries were the clear choice for
the needs of our architecture. We decided
to use open source libraries, instead of
writing our own, to take advantage of
libraries that the worldwide developer
community is maintaining and enhancing.
We assembled application building blocks
by selecting a set of libraries:

• Data binding

• Design patterns

• Storage capabilities

• Common tasks, such as data manipulation
and Asynchronous JavaScript and XML
(AJAX) communication

• Date and time manipulation

• Navigation

• Mobile UI layer

• Desktop UI layer

Each library we selected served a particular
purpose in our architecture.

Model View ViewModel
Next we needed to select an effective
design pattern for our architecture. A
design pattern describes the high-level
structure of an application. We chose the
MVVM design pattern, which is largely
based on the Model View Controller
pattern. The MVVM is targeted for UI
development platforms leveraging event-
driven programming.

The MVVM breaks the application into three
layers: model, view, and view model.

• Model. The model is the lowest layer
of the application that provides the
content, or business logic. In this layer,
we implemented a data source, which
is the abstraction layer over a particular
source, and a data provider, which is the
implementation for a specific source. The
model layer enables us to support different
platforms using different data sources
without affecting the logic.

Transforming the IT
Ecosystem to Support the
Applications and Devices of
the Future

Developing a cross-platform
architecture that optimizes both
the developer experience and the
user experience supports Intel IT’s
larger initiative to enable enterprise
applications to support the devices
of today, such as touch-enabled,
Intel® architecture-based business
Ultrabook™ devices, 2-in-1 devices,
and tablets. The cross-platform
architecture also supports emerging
interaction methods, such as voice,
gesture, and perceptual computing.

We have identified five criteria that
lead to a better end-user experience:

• Security

• Ease of use

• Platform independence

• Device independence

• Support for emerging devices and
interactions

Focusing on these criteria also increases
an application developer’s productivity
and efficiency and contributes to a
better overall experience.

http://www.intel.com/IT

4 www.intel.com/IT

IT@Intel White Paper Optimizing the Developer and User Experiences for Cross-Platform Applications

• View. The view layer presents the data
and UI controls on the screen using HTML5
and CSS3 (see the “HTML5 and the
Platform-Optimized Architecture” sidebar).
The view layer is logic free and enables us
to add UI libraries to optimize the view for
a specific platform.

• View model. The view model layer
converts values between the model
layer and view layer, which allows the
data objects from the model layer to
be managed and displayed in the view
layer. The view model layer uses the data
binding mechanism to glue together the
logic and the view, enabling us to create
functions for specific devices. For example,
we can specify how an application will
respond to a click event on a desktop, or a
touch event on a smartphone or tablet.

Figure 1 shows an overview of an application
using the MVVM design pattern.

Overall, using the MVVM provides many
benefits. It provides a complete separation
between the UI and business logic, enabling
us to layer the application and swap out
components as needed. For example, we can
discard one view, bring in another one, and
bind it to the same logic. We can also create
separate modules with functions that are
common for all views and then add more

functions that are relevant for only specific
types of devices.

The separation that the MVVM provides
helps developers create reusable code,
particularly in the logic and model layers. This
separation also helps the development team
structure the project between developers
and module owners more effectively. For
example, with the MVVM approach, each
developer can work on a single set of
modules or files. These modules are designed
as separate, pluggable components that are
each maintained with its own set of files.
This mode of work prevents collisions and
promotes effective design patterns.

Object-Oriented
Programming Principles
Another piece of our architecture is the
application of OOP principles. To use libraries
and the MVVM design pattern, we needed
to understand and apply OOP principles and
interpret the relevant ones into JavaScript.

We used the following OOP JavaScript principles:

• Objects are abstract ideas that are modeled
in an application and perform all the work.
Each object has a state and behavior. In
the MVVM, objects define the application
data (models), UI look and feel (views), and
application behavior (view models).

View Layer
• UI Libraries

Mobile View Desktop View

Mobile View Model Desktop View Model

Data Source

ZHE�VHUYLFH��ÁDW�ÀOH��DQG�VR�RQ
3ODWIRUP�6SHFLÀF�'DWD�6RXUFH

EULGJH�WR�GHYLFH�$3,V

View Model Layer
• 'RFXPHQW�2EMHFW�0RGHO�0DQLSXODWLRQ�/LEUDU\
• 0RGHO�9LHZ�9LHZ0RGHO�/LEUDU\

Model Layer
• 'RFXPHQW�2EMHFW�0RGHO�0DQLSXODWLRQ�/LEUDU\
• 6WRUDJH�/LEUDU\

Services

Base View Model

Data Provider Implementation

Data Abstraction

Figure 1. The Model View ViewModel design pattern separates the UI implementation from the model layer’s business logic and its underlying data sources.

HTML5 and the Platform-
Optimized Architecture

HTML5 is a key component of Intel IT’s
mobile application development strategy.
The platform-optimized architecture
uses HTML5 in the view layer, taking
advantage of mobile device capabilities to
provide an enhanced user experience. The
supported capabilities that users have
come to expect from mobile apps include
the following:

• Global Positioning System (GPS)

and geolocation. Apps can activate
the GPS and consume geolocation
information.

• Camera. Apps can activate the
device’s camera.

• 3D graphics. Apps can display
3D graphics.

• Contacts. Apps can edit and update
local contacts.

• Local storage. Apps can read and
write to local storage.

• Short message service (SMS).
Apps can initiate SMS messaging.

• Web intents. Apps can invoke the
functionality of another application.

http://www.intel.com/IT

www.intel.com/IT 5

 Optimizing the Developer and User Experiences for Cross-Platform Applications IT@Intel White Paper

• Encapsulation is the concept of enclosing
an object’s methods and properties within
that object so that they are hidden from
the rest of the application. Encapsulation
enables developers to abstract a specific
set of functionalities on specific objects
from the rest of the application.

• Inheritance is the passing on of
methods and properties from a parent
object. This concept is important for
creating a view model that contains
code common to all platforms, which is
discussed in the next section.

All three principles are important because they
support our goals for building applications with
reusable, self-contained code.

70/30 Reuse Model
Our exploration showed that the data
binding mechanism alone (discussed earlier
in the “Model View ViewModel” section) was
not enough to enable switching between
different UI views for different platforms. The
primary challenge was how to encapsulate

the different interaction types, derived from
the form factor, on a single layer. To address
this challenge, we implemented a 70/30
reuse model. This reuse model creates two
distinct view models:

• A shared base view model that defines
the interactions common to all platforms
(70 percent of code base)

• An extended view model that is specific
to the platform (30 percent of code base)

The OOP inheritance principle enables
applications to inherit from the base view
model. This inheritance along with the
declarative binding between the view and the
view model make the support of an optimized
UI possible, as shown in Figure 2.

For example, our Virtual Assistant application
includes an employee search feature (see
Figure 3). The shared base view model
executes the search functionality with
paging, while the mobile view model controls
how the results display on a smartphone, and
the desktop view model controls how the
results display on a desktop.

Figure 3. The Virtual Assistant application displays search results differently, depending on whether they are viewed from a mobile device or a desktop.

Mobile View

Declarative

Binding

Inheritance

Desktop View

Mobile View Model Desktop View Model

View Model

Base View
70% of code base

3ODWIRUP�6SHFLÀF
30% of code base

Figure 2. Inheritance and declarative binding

enable views to be optimized for a particular

platform.

Mobile View Desktop View

http://www.intel.com/IT

6 www.intel.com/IT

IT@Intel White Paper Optimizing the Developer and User Experiences for Cross-Platform Applications

The reuse model extends beyond a single
project or application. Table 1 lists how we
can achieve code reuse by application layer,
both in a single project and among other
projects. The base view model (70 percent)
can be reused in the same project by all
views. Only the extended view model
(30 percent) and the view layer are
platform-specific and cannot be reused.

All objects in the model layer (data object,
provider, and source) can be reused in other
web-based projects.

BEST-KNOWN METHODS
With our architecture in place, we were
ready to conduct a proof of concept
(PoC) to help us refine the architecture
and generate best-known methods to
pass on to developers.

To test our platform-optimized architecture
using the PoC, we developed the Campus
Information application for the Microsoft
Windows* 8 platform. This application, which

was already supported on various smartphone
devices, used HTML5 geolocation to provide
features based on the device location. Our
challenge was to reuse as much existing code
as possible while implementing an MVVM
structure with cross-platform UI logic layers
and a platform-specific layer. Equally important
was the need to deliver the user experience
that Windows 8 users would expect.

First, we worked on the model layer of
the Campus Information application, which
represented the data coming from the back-
end systems through web services. Next,
we worked on the base view model that
would contain the interactions common to all
platforms. We built each layer so it could stand
alone with clear and minimal dependencies.
This enabled us to reuse these layers, focus
on the Windows 8 user experience, and deliver
the application in a shorter period of time.

Overall, the results were successful. Moving
from a monolithic structure to a layered,
component-based application led to increased
code quality, maintainability, and extensibility.
The structure also supports the delivery of a
user experience tailored for a specific device.

The PoC also enabled us to identify several
best-known methods to help developers use
our platform-optimized architecture:

• Table of requirements. We created a
table for developers to help them choose
the architecture that would best meet
their use case requirements (see Table 2).

• Project templates. We created project
templates that contain sets of JavaScript
libraries optimized for different platform
types. Developers can use the templates to
create an entire skeleton for an application.

• Internal social coding site. We used
our internal social coding site to share
our platform-optimized templates and
encourage developers to use this approach.
Developers can access the latest versions
of our templates on this site.

Learning our architecture and applying it
effectively takes time and has a learning
curve. These best-known methods enable
developers to identify when to use our
architecture and give them a good starting
point for applying the architecture to their
application development.

Table 1. Code Reuse by Application Layer

Application Layer Object Code Reuse

View UI view Platform-specific

View Model Extended view model (30 percent of code base) Platform-specific

Base view model (70 percent of code base) All views can reuse the code in the same project

Model • Data object

• Data provider

• Data source

Any web-based project can reuse the code

Table 2. Choosing between Responsive Web Design and Platform-Optimized Architecture

Responsive Web Design Platform-Optimized Architecture

Use Case Default architecture When device features are required as part of an enterprise mobility application framework

Multiplatform Yes Yes

Rendering Target Web Web browser/hybrid app

Device Features Some All (when in an enterprise mobility application framework)

Code Base Single code base Multiple code base

http://www.intel.com/IT

 Optimizing the Developer and User Experiences for Cross-Platform Applications IT@Intel White Paper

CONCLUSION
Our platform-optimized architecture
is built on cross-platform application
layers that consist of libraries, the
MVVM design pattern, a 70/30 reuse
model, and OOP principles. This
architecture is designed to provide a
device-tailored user experience for
the supported platforms. More than
just adjusting for a device’s screen
size, applications take full advantage
of a device’s features and interaction
modes, behaving in a manner
consistent with what the user is
expecting on that device.

Additionally, the developer’s job is
streamlined: code is reusable within a project,
and some code is reusable among all web-
based projects. The architecture ensures a
more efficient way to develop and maintain
applications, easing development when
additional platforms are supported. It also
provides a structure that enables teams to
divide up work more effectively.

Looking to the future, our architecture is
well-suited to meet the introduction of more
devices, platforms, and interaction types.
As more applications are expected to take
advantage of each platform’s capabilities,
the use of this architecture may become
more widespread and vital to our strategy for
cross-platform application development.

RELATED INFORMATION
Visit www.intel.com/it to find content
on related topics:

• “ Accelerating Our Path to Multi-Platform
Benefits”

• “ Building a Mobile Application Development
Framework”

• “ Implementing a Cross-Platform Enterprise
Mobile Application Framework”

• “ Learnings from Early Native Apps Improve
HTML5 and Hybrid Apps”

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel, the Intel logo, Look Inside., the Look Inside. logo, and Ultrabook are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright 2014 Intel Corporation. All rights reserved. Printed in USA Please Recycle 0314/JGLU/KC/PDF 330107-001US

For more information on Intel IT best practices,
visit www.intel.com/IT.

ACRONYMS
AJAX Asynchronous JavaScript
 and XML

GPS Global Positioning System

MVVM Model View ViewModel

OOP object-oriented
 programming

PoC proof of concept

RWD responsive web design

SMS short message service

http://www.intel.com/it
http://www.intel.com/IT

