
Learnings from Early Native Apps
Improve HTML5 and Hybrid Apps

IT@Intel White Paper
Intel IT
Mobile App Development
January 2014

We identified several best
known methods for native

development, which we are now
applying as we shift our focus
from native functionality and

features to newer emerging
and maturing technologies.

David Byrne
Handheld Technology Specialist, Intel IT

Joseph Doolittle
Enterprise Architect, Intel IT

Patrick Salo
Apple Branded Client Engineer, Intel IT

Executive Overview

Over the past two years, Intel IT has validated and improved its mobile application

development framework, which was built to accelerate the delivery of secure mobile

enterprise applications to Intel employees. Focusing first on native development,

we identified best-known methods (BKMs) that we used to refine our framework

and applied these methods to emerging development technologies.

In 2011, HTML5 and hybrid mobile
application development technology was
immature. So we focused instead on native
development, which offered a rich user
experience and streamlined connectivity. At
first, we attempted to port entire enterprise
applications from laptops to mobile devices
and encountered several challenges. These
challenges included slow performance and lack
of full VPN and LAN access on mobile devices.

We then conducted a pilot project to deliver
increased productivity and flexibility to
business travelers by enabling native mobile
access to a specific functionality: our Air Shuttle
application. In the process, we successfully
overcame the technical challenges we had
encountered during earlier mobile application
development efforts. We also identified
several BKMs for native development, which
we are now applying as we shift our focus
from native functionality and features to
newer emerging and maturing technologies.
These methods include the following:

• Componentization. Our practice is
to componentize mobile applications
and connect features to back-end
services for all delivery mechanisms.

• Reusable libraries. We developed
reusable native libraries and ported
them to the Web/HTML5 and
hybrid delivery mechanisms.

• Creative solutions. Shifting our
thinking from desktop and notebook
applications, we explore creative ways
to meet mobile development needs.

• Best delivery mechanism. We
consider the business needs of the
mobile application, weighing the
advantages and disadvantages that
each delivery mechanism provides.

• Third-party integration. Taking our
lessons learned in connectivity and security,
we educate our third-party suppliers
on how to integrate with our back-end
services while traversing our firewall.

• Collaboration. Working together
to streamline mobile application
development, we collaborate and
benefit from each other’s work.

By having one strategic direction
and common resources, we are able
to eliminate duplicate efforts and
improve the process overall.

2 www.intel.com/IT

IT@Intel White Paper Learnings from Early Native Apps Improve HTML5 and Hybrid Apps

BACKGROUND
The consumerization of IT and growth
of bring-your-own (BYO) devices have
changed the way Intel employees
work and what they expect from IT.
Employees now want to be able to
access enterprise applications and
services from any device and any
location. Intel IT saw the need to
develop a cross-platform framework
that would enable us to develop
and deploy mobile applications on
various form factors and OSs.

In early 2010, Intel IT implemented a bring-
your-own-device program that allowed
employees to use their own smartphones
to access corporate data. On these devices,
employees have evolved from using the
provided calendar, contacts, and email services
to expecting more access to enterprise
services and applications while on the move. In
response, we have provided increased access
to information and IT services to improve
flexibility and boost productivity. Internal data
indicates that employee productivity and
job satisfaction have increased as a direct
result of implementing personal devices
in the enterprise, with a user satisfaction
rating of 94 percent (measured in the
fourth quarter of 2012). Employees send

approximately 2.27 million business-related
email messages each quarter from corporate
and personal devices. More importantly,
employees report a time savings of about
an hour per day by using personal devices.1

As shown in Figure 1, mobile devices have
grown to over 42,200 corporate and personal
devices in our current mixed OS environment.

Intel’s Mobile
Application Framework
Responding to the increased user demand
for mobile enterprise applications, Intel IT
formed a cross-organization team that
began developing a cross-platform mobile
application framework in early 2011. This
extended framework enables us to provide
a fast-track mobile application development
and deployment capability that can keep
pace with the rapid introduction of form
factors, interaction methods, and OSs.
This solution also provides mitigating
capabilities and the ability to grant or revoke
appropriate access levels, which address
the common challenges that our enterprise
IT department faces with respect to data
security, privacy, and device manageability.2

1 See “Best Practices for Enabling Employee-owned Smart
Phones in the Enterprise,” December 2011.

2 See “Implementing a Cross-Platform Enterprise Mobile
Application Framework,” July 2013.

0

10,000

20,000

30,000

40,000

50,000

OS A

OS B

OS C

OS D

OS E

OS F

November 2013November 2012November 2011

Mobile Device Usage at Intel

M
ob

ile
 D

ev
ic

es

Figure 1. From 2011 to 2013, mobile device usage at Intel has nearly doubled in our mixed OS environment.

Contents

Executive Overview ... 1

Background ... 2

Intel’s Mobile Application
Framework ... 2

Early Focus on Native
Delivery Mechanism ... 3

Early Mobile Development
Challenges ... 4

Air Shuttle Mobile Application:
A Better Approach ... 4

Application Results .. 5

Enterprise-Wide Results 5

Applying Key Learnings to Other
Delivery Mechanisms ... 6

Key Learning #1: Break
Applications into Components 6

Key Learning #2:
Develop Reusable Libraries 6

Key Learning #3:
Explore Creative Solutions 7

Key Learning #4:
Choose the Best Delivery
Mechanism for the Use Case 7

Key Learning #5: Integrate
with Third-Party Suppliers 7

Key Learning #6: Collaborate
with Other Business Groups 7

Conclusion ... 8

Related Information ... 8

Acronyms ... 8

IT@INTEL
The IT@Intel program connects IT
professionals around the world with their
peers inside our organization – sharing
lessons learned, methods and strategies.
Our goal is simple: Share Intel IT best
practices that create business value and
make IT a competitive advantage. Visit
us today at www.intel.com/IT or contact
your local Intel representative if you’d
like to learn more.

http://www.intel.com/IT
http://www.intel.com/IT

www.intel.com/IT 3

 Learnings from Early Native Apps Improve HTML5 and Hybrid Apps IT@Intel White Paper

Development of a cross-platform mobile
development application framework is part
of our larger effort to enable enterprise
applications to support the devices of
today, such as touch-enabled, Intel®
architecture-based business Ultrabook™
devices, 2-in-1 devices, and tablets, and to
develop applications that support emerging
interaction methods, such as voice, gesture,
and perceptual computing. (See the sidebar,
“Transforming the IT Ecosystem to Support
the Applications and Devices of the Future”.)

The mobile application framework
supports several ways for deploying mobile
applications, as described in Table 1.3

Early Focus on Native
Delivery Mechanism
As we began our early efforts to mobilize
enterprise applications, we evaluated the
native, Web/HTML5, and hybrid delivery
mechanisms. Each mechanism had pros and
cons associated with user experience (UX),
ease of connectivity, time to deliver, and level
of reuse across mobile platforms. In 2011,
HTML5 was still an emerging technology
that often provided a less-than-optimal
UX and application functionality. Also, we
had not yet selected a mobile enterprise
application platform (MEAP) provider.
Therefore, during that phase, we focused
on the native delivery mechanism based on
its relative maturity and its superior UX.

Native development enabled us to focus on
solutions that met corporate legal, human
resources, and security policies; however,
it limited our ability to reuse the code
base on multiple OSs. We concentrated on
solving the enterprise requirements and
developing best-known methods (BKMs) so
that later we could apply these learnings
to the other delivery mechanisms.

3 See “Building a Mobile Application Development
Framework,” August 2012.

Table 1. Advantages and Disadvantages of Mobile Application Deployment Mechanisms

 Deployment Mechanism Advantages Disadvantages

Native

Applications are platform-dependent

Applications are delivered by an app
store and updated per device, per OS

• Often provides best
user experience

• Provides access to device
sensors and features

• Enables rapid adoption of new
user experience paradigms

• Requires recoding
resources one
OS at a time

• Requires technical
support for multiple OSs

• Requires unique code for
different screen sizes

Web Browser Only (HTML5)

Applications are platform-independent

Applications are delivered through the
browser

Most WebKit browsers are supported

• Enables code portability

• Provides optional coding
and delivery mechanisms

• Increasingly supports
device capabilities

• Relies on immature
HTML5 implementation

• Often requires network
connectivity

• Can require good network
connectivity for optimal
user experience

Hybrid (Native + Web)

Applications are platform-independent

Each container is secure with
platform-agnostic content

Each container is native to a device
and uses HTML5 code

• Enables code portability

• Provides optional coding
and delivery mechanisms

• Provides access to device
sensors and features

• Increasingly provides access
to device capabilities

• Relies on immature
HTML5 implementation

• Often requires network
connectivity

• Can require good network
connectivity for optimal
user experience

Transforming the IT Ecosystem to Support
the Applications and Devices of the Future

We identified five criteria that lead to a better end-user experience—security, ease of
use, platform independence, device independence, and support for emerging devices and
interactions. These same five criteria lead to a better application developer experience by
removing obstacles and providing readily available tools to increase application developer
productivity and efficiency.

The implementation of a mobile application development framework enables us to create
mobile applications that meet all five criteria. And, although the end result is applications
that work better now and can take advantage of future technology changes, our work
affects more than application development—it affects many components of the Intel
computing environment, including security and privacy policies, mobile device management,
mobile application lifecycle management, and application testing and scalability.

http://www.intel.com/IT

4 www.intel.com/IT

IT@Intel White Paper Learnings from Early Native Apps Improve HTML5 and Hybrid Apps

Early Mobile Development
Challenges
Our early mobile development efforts
focused on porting utility applications
from notebooks to mobile devices. We
started with the Intel Employee Portal,
our website that provides an extensive
set of resources for employees. This
portal was initially available to employees
using notebooks. Our goal was to make it
accessible to smartphone users as well.

From this project, we discovered the
challenges involved in attempting to mobilize
an entire application. One significant
challenge was that the performance on
the mobile device was much too slow.
While notebooks could handle large data
sets, mobile devices lacked the processing
power, local cache and storage, and screen
size to handle the volume of information
being returned. Compounding the problem
was the connectivity at the time, which

was available only at 3G network speeds.
We were also constrained by the hardware
and software available on mobile devices.

Another significant challenge was enabling
VPN access on mobile devices. Notebooks
connect over VPN to enterprise services
with less restrictive infrastructure controls
due to the mature level of device capabilities
and overall device management. On mobile
devices, open VPN tunnels were not
allowed under Intel’s security guidelines.
We had to devise an approach for explicitly
enabling only the desired services.

At the same time, other business
groups were working in isolation and
encountering these same challenges. We
realized there was a need for sharing a
strategic direction and common resources,
so we could eliminate duplicate efforts
and improve the process overall.

Table 2 describes the other technical
challenges that we encountered.

AIR SHUTTLE
MOBILE APPLICATION:
A BETTER APPROACH
In the third quarter of 2011, we
designed a pilot project to refine
our mobile application development
framework and to solve the technical
challenges we had encountered so
far. We decided to mobilize the Air
Shuttle web application, which is
used to make reservations on Intel’s
chartered plane service for travel
between major Intel U.S. campuses.

IT and Corporate Services (the owners of
the Air Shuttle web application) partnered to
enable access to the Air Shuttle application
on two types of native mobile devices. We
also recently introduced an HTML5 version
in September 2013. The scope of the Air
Shuttle project is shown in Figure 2.

Table 2. Challenges Encountered When Porting Existing Applications to Mobile Devices

 Technical Development Challenge Description

LAN Access On mobile devices, developers no longer had full connectivity and access to the LAN.

Environment In most cases, developers had to switch PC platforms, change development environments, and tackle new challenges
such as memory management.

Ecosystem Developers were challenged by changes to the ecosystem itself, including different cultural norms, methods for
development, and levels of toolset maturity.

Framework The new mobile frameworks changed the existing daily development tasks.

Code Repositories Mobile development used a different set of repositories than those that were typically used internally.

Quality Assurance (QA) QA for mobile devices did not exist. The QA team did not have the tools required to simulate the mobile devices in
our environment that were connecting through our infrastructure. Additionally, there were no client tools to validate
good application practices (for example, testing the impact of the code on the device’s battery life). These challenges
restricted QA to performing just functional testing on limited hardware instances.

Corporate Asset Protection Mobile applications required new ways of protecting data, which included application firewalls, VPN with whitelisted
applications, and management of corporate credentials.

Legal Because this was the first time we were deploying software to devices that were not owned by Intel or fully managed
by IT, we needed to ensure that all legal issues were reviewed and approved. We also needed to ensure that user privacy
was maintained.

Potential for Hacking, Breaches,
and Abuse

Because some of the devices were not owned by Intel, we had no control over the OS revision, software installed,
networks the devices were used on, and so on. Therefore, it was important to ensure that Intel intellectual property
would remain safe and secure even though IT had limited control of the devices themselves.

Branding Guidelines Internal branding guidelines needed to be developed and deployed.

Key Building Blocks Several software methods needed to be developed internally for cross-product and cross-platform development.

http://www.intel.com/IT

www.intel.com/IT 5

 Learnings from Early Native Apps Improve HTML5 and Hybrid Apps IT@Intel White Paper

From our past experiences, we learned that
attempting to make an entire enterprise
application available on a mobile device
led to significant challenges, such as slow
performance. This time, we concentrated on
mobilizing specific feature sets. Frequent
business travelers were asked to list the top
priority items to mobilize, which were identified
as the ability to book, view, and update flights
and ground transportation, and to use the
wait-list and flight status functions. Focusing
on these use cases enabled us to break the
development effort into smaller pieces.

The solution required web services to provide
connectivity to the main Air Shuttle application
database and to handle complex logic. A
native mobile application was developed to
provide a rich UX and to leverage the most
mature technologies available for enterprise
mobile application development at the time.

In November 2011, we successfully
deployed the Air Shuttle mobile application
by using the processes, governance,
tools, and technology outlined in
the mobile application development
framework. Figure 3 illustrates how the
application appears on a mobile device.

Application Results
From a business standpoint, the Air
Shuttle mobile application project
included the following highlights:

• 95-percent first-time successful
provisioning to the device

• Over 5,000 downloads

• Used by an average of 500 users per week

• Increased productivity and flexibility
for users

From an IT standpoint, the Air Shuttle
mobile application achieved many
technical firsts, including the following:

• The first internally developed
mobile native application accessing
services on Intel’s intranet

• The first mobile application delivered
utilizing a mobile VPN product

• The first mobile project to execute
independent QA testing

Perhaps most importantly, Air Shuttle
was the first application to follow
the mobile application development
framework and iteratively improve
the framework through integration of
learnings during the project lifecycle.

Enterprise-Wide Results
Building on the success of the Air
Shuttle project, we developed reusable
libraries, which have reduced overall
mobile application development by up
to 25 percent (for example, from eight
weeks to six weeks). The libraries enable
this savings in the following areas:

• Design. Layouts, graphics, and branding
requirements are up-to-date and
approved, freeing developers from
time spent on design issues and
providing users with a consistent UX.

• Code translation time. Developers
can focus on business logic and
connecting application features to the
back end, which is already in place.

• Security and legal audits. With common
corporate logic and the bulk of the
security code already inspected and
approved, a full security or legal audit for
every new application is unnecessary.

We were able to port components of these
reusable libraries to the Web/HTML5 and
hybrid mechanisms so that overall mobile
application development time is accelerated,
no matter which delivery mechanism is
chosen. See “Key Learning #2:
Develop Reusable Libraries”.

We also applied lessons learned to
other scenarios, specifically integrating
with enterprise services. From human
factors engineering grew a standard
look and feel and secure components
for communications with the corporate
domain. In addition, we applied learnings to
web applications, Intel Trusted Application
Portal, and hybrid applications.

Who
• Intel IT
• Corporate Services

What
• Top mobile

use cases

Where
• Fast-growing,

app-savvy
mobile device
population

When
• Pilot Q3: 2011
• Production: Q4 2011

Air Shuttle
App

How
• Prove available

mobile technology

Figure 2. We partnered with Corporate Services
and identified the scope and purpose of the Air
Shuttle project.

Figure 3. The mobile version of the Air Shuttle
application’s user interface is designed for
screens that are smaller than those on laptops.

http://www.intel.com/IT

6 www.intel.com/IT

IT@Intel White Paper Learnings from Early Native Apps Improve HTML5 and Hybrid Apps

APPLYING KEY
LEARNINGS TO OTHER
DELIVERY MECHANISMS
Using the native mechanism to develop
our first mobile applications made
sense at the time, because HTML5 was
still maturing. The native mechanism is
still part of our core mobile application
strategy, but we are moving toward the
hybrid and Web/HTML5 mechanisms
for developing enterprise mobile
applications. From our experiences
with native mobile application
development, we learned key lessons
that we have applied to the hybrid
and Web/HTML5 delivery mechanisms
to improve the overall mobile
application development framework.

Key Learning #1: Break
Applications into Components
From our early efforts developing native
applications, we realized it was critical to
create once and then stage for reuse. This
led to a new philosophy for developing
applications: Instead of developing the
whole application, we break it down into
components, enabling developers to reuse
chunks of code for functions common to
all applications. By separating connectivity,
security, and manageability code into
reusable libraries, we enabled development
teams to focus on the business logic and
unique features of their applications.

We separated application logic into
representational state transfer (RESTful)
services, where the client application
maintains the session state and the
application logic. Decomposing the business
logic into a stateless layered system
allowed us to enable business functionality
through the corporate gateway and
firewall protections, while enabling load
balancing for performance purposes.

This componentized approach has
become our corporate standard for
mobile application delivery.

Key Learning #2:
Develop Reusable Libraries
We first developed reusable libraries for
native applications, providing common
application utility across OSs and devices.
Libraries provide a starting point for
developers as well as all the building
blocks they need, while insulating them
from enterprise back-end services such
as security and authentication. This
frees developers to focus on application
functionality and business logic.

We then took most of these native building
blocks and recreated functional equivalents
for the Web/HTML5 and hybrid development
environments. As we continue to develop
mobile applications, our lessons learned in
each development environment are multi-
directional. We take the best functionality in
each library and apply it to the other libraries.

Our reusable code libraries include
these features:

• Enterprise signing and release
mechanisms to maximize cross-app
permissions. Signing allows for software
authenticity and validation that the
software hasn’t been tampered with.
The standardized release mechanisms
allow for consolidated distribution of
applications across devices and platforms.

• Streamlined security and connectivity
mechanisms. By creating a standardized
template of connectivity, we can quickly
and easily deploy additional applications
without needing to recreate security and
connectivity mechanisms each time.

• Security, legal, privacy, and geo-location
guidelines. Because many devices are
employee-owned, we had to negotiate
between IT control and involvement and
the employee’s control and ownership of
the device. This required a security review
and approval on implementations. We
partnered with the Privacy team to review
and provide guidance on what kind of
data could be used and stored and how
it should be disposed of in the future.

Collaborative Project Sets
High Standard for Mobile
Application Development

The Air Shuttle project was notable
for the level of collaboration achieved
between numerous business
groups. The project was chartered
by a partnership between IT Client
and Collaboration Engineering and
Corporate Services. The IT Capability
Segment Teams solicited employee
feedback on which Air Shuttle
features to mobilize. The project
team also partnered effectively with
other teams in networks, secure
connectivity, and security to deliver
the first approved path between the
mobile device and the Intel network.

http://www.intel.com/IT

www.intel.com/IT 7

 Learnings from Early Native Apps Improve HTML5 and Hybrid Apps IT@Intel White Paper

One key consideration in establishing the
guidelines was the employee’s location and
how this information could be used. Many
of our applications use location services
to speed up data entry (for example, our
conference room booking application can
preselect a building based on the employee’s
location). To support our privacy policy,
users can decline the use of their location
and manually select their current location.

• Centralized code storage, access, and
updates. By consolidating BKMs into
code frameworks, we can ensure code
reuse by future projects. We also have a
centralized location that stores updated
core code components instead of having
them spread across various code bases.

• Improved UX through common layouts
and look and feel. By using a common
look and feel, developers provide users
with a familiar interface regardless of
the platform or OS they are running.

Key Learning #3:
Explore Creative Solutions
An important lesson that we learned while
developing our first native applications
was to explore technical solutions from
a different angle. We had to be creative
to learn what could work on a mobile
device and what was secure. Additionally,
when mobilizing traditional desktop
applications, it was important to consider the
applications’ key functionality when users
were away from their primary computing
system, while also taking advantage of
mobile device sensors and features.

For example, in our first foray into mobile
application development, we ran into the
challenge of enabling VPN on a mobile device.
Due to Intel’s increased security guidelines,
we could not allow full VPN access from
mobile devices, particularly as many of the
devices being used were BYO. To find a
workable solution, we put additional controls
into the back end to analyze behavior and
identify what the normal behavior was.
We decided to use a whitelisting approach
where identified applications are explicitly
allowed, enabling only the desired services.
Other applications are not allowed enterprise
or service access when connecting.

Key Learning #4:
Choose the Best Delivery
Mechanism for the Use Case
We have learned that no single solution fits
every use case; there are multiple ways to
solve a problem, and we consider the pros
and cons of each delivery mechanism for
each use case. Our primary strategy is to
use the Web/HTML5 or hybrid mechanism
for mobile application development, with
the native mechanism being the exception.
However, as shown in the case of the Air
Shuttle project, the native mechanism
was determined to be the best fit for the
business use case after we weighed the
pros and cons of each mechanism. At that
time, native application development using
VPN offered the best UX and streamlined
connectivity for users when compared to
the available mobile web portal technology
and relatively immature state of the HTML5
standard for cross-browser development.

Instead of relying only on a single solution,
we instead explore and invest in HTML5,
hybrid, and native solutions as appropriate.

Key Learning #5: Integrate
with Third-Party Suppliers
Though our third-party suppliers do not use
our internal libraries, they are required to
traverse the same connectivity path and
integration through Intel’s firewall. From
our experiences with mobile application
development, we are able to educate
suppliers on the best approach for how they
can integrate their own libraries with ours
and how they can integrate with our back-
end services while traversing the firewall.

Applying our lessons learned, we can hold
our suppliers accountable to the same
methods for application connectivity
and security audits that we use.

Key Learning #6: Collaborate
with Other Business Groups
Various business groups within Intel IT were
starting mobile application development
without working together or sharing BKMs.
These groups experienced many of the same
challenges without collaborating on the best
technical solutions. The Air Shuttle project
taught us the value of collaboration with
diverse groups, both within and outside of
IT. Together, project stakeholders defined
the scope and purpose of the project and
involved the key business groups throughout
the duration of the project. This collaboration
enabled us to successfully develop and
deploy the Air Shuttle mobile application and
set a precedent for collaboration in the future.

http://www.intel.com/IT

CONCLUSION
Our mobile application development
framework supports the building,
deploying, and sustaining of mobile
applications on various form factors.
The delivery mechanisms that we
use to develop mobile applications
are native, Web/HTML5, and hybrid.
To validate the mobile application
development framework, we focused
on the native mechanism first, due
to its maturity, richness of UX, and
streamlined connectivity, especially
when compared to the relatively
immature state of the HTML5 standard
at that time. Eventually, the lessons
we learned while creating those
early native applications informed
our development efforts with
mobile applications of all kinds.

Early native mobile development efforts
revealed many technical challenges, such
as slow performance on mobile devices,
lack of full VPN and LAN access, and
significant changes to the overall developer
environment and ecosystem. The Air
Shuttle project offered a better approach
to native mobile application development.
That project, which was the first to test

the mobile application development
framework, led to key learnings and BKMs
that helped refine the framework.

As we shift our focus from native
functionality and features to newer
emerging and maturing technologies,
these learnings have transferred over
as well. For all delivery mechanisms,
we practice componentizing mobile
applications and connecting features to
back-end services. For the native delivery
mechanism, we developed reusable libraries
and ported them to the Web/HTML5 and
hybrid delivery mechanisms. Shifting our
focus away from desktop and notebook
applications, we explore creative solutions
for meeting mobile application needs. We
consider the best mechanism for meeting
the business needs of the mobile application
while weighing the pros and cons of
each at the time. Applying our lessons
learned in connectivity and security, we
educate our third-party suppliers on how
to connect to our back-end services. We
share challenges and learnings between
business groups in order to streamline
development effort for all parties. By
having one strategic direction and common
resources, we are able to eliminate duplicate
efforts and improve the process overall.

RELATED INFORMATION
Visit www.intel.com/it to find content
on related topics:

• “ Best Practices for Enabling Employee-
owned Smart Phones in the Enterprise”

• “ Building a Mobile Application
Development Framework”

• “ Implementing a Cross-Platform Enterprise
Mobile Application Framework”

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT

Intel, the Intel logo, Look Inside, and the Look Inside logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014 Intel Corporation. All rights reserved. Printed in USA Please Recycle 0114/JGLU/KC/PDF 329831-001US

For more information on Intel IT best practices,
visit www.intel.com/IT.

ACRONYMS
BKM best-known method

BYO bring your own

MEAP mobile enterprise application
platform

REST representational state transfer

UX user experience

 Learnings from Early Native Apps Improve HTML5 and Hybrid Apps IT@Intel White Paper

www.intel.com/it
http://www.intel.com/IT

